Application Note AFS-101

Determination of Mercury in Water Samples by HG-AFS

Mercury and its compounds are highly toxic materials and can be transferred into the human body via water; the concentration of mercury in water generally is very low. With the superior sensitivity of atomic fluorescence spectrometer, direct measurement of mercury in water sample is possible.

1. Major equipment and reagents.

Mercury stabilization solutions:

Dissolve 0.5g K₂Cr₂O₇ in 950 mL water, add 50ml nitric acid.

Mercury standard solutions:

Prepare or commercial available mercury standard at 100ppm, diluted to 10ppb with mercury stabilization solution as above.

KMnO₄ solution, 50g/L.

Potassium persulfate solution, 50 g/L

SnCl, solution:

Add 100g SnCl2 in 100 mL concentrated HCl, water bath to totally dissolved, add water to 1000 mL.

NaCl-NH₂OH solution, 120 g/L

AI3300 atomic fluorescence spectrometer with Hg lamp.

High pure distilled water.

High pure argon (>99.99%)

2. Method

Place 25mL water sample in a 50mL flask, add 4mL concentrated H_2SO_4 , 2.5mL KMnO $_4$ solution, and 1.0mL potassium persulfate solution, in a boiling water bath for 1 hr. Take the flask from the bath and cool it down. Before measurement, add NaCl-NH $_2$ OH solution to the color of KMnO $_4$ until the color disappears, then add water until the total volume is 50mL. Use the final solution for measurement.

3. Instrument parameters

Carrier gas 300mL/min
Shield gas 800mL/min
HCL current 30mA
PMT voltage 360V
Integration time 6 s
Pump speed 40 r/min

Reducing reagent solution 10% SnCl₂ in 10% HCl (V/V)

4. Results

This method gives: Detection limit: 0.25ppb, Recovery rate: 98~117%

Relative standard deviation: 2~6%

