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ABSTRACT

Peripheral sensory ganglia contain somata of afferent fibres conveying somatosensory inputs to the
central nervous system. Growing evidence suggests that the somatic/perisomatic region of sensory neu-
rons can influence peripheral sensory transmission. Control of resting membrane potential (E;es) is an
important mechanism regulating excitability, but surprisingly little is known about how E..; is regulated
in sensory neuron somata or how changes in somatic/perisomatic E,.s affect peripheral sensory transmis-
sion. We first evaluated the influence of several major ion channels on E..s in cultured small-diameter,
mostly capsaicin-sensitive (presumed nociceptive) dorsal root ganglion (DRG) neurons. The strongest
and most prevalent effect on E,.s; was achieved by modulating M channels, K2P and 4-aminopiridine-
sensitive Ky channels, while hyperpolarization-activated cyclic nucleotide-gated, voltage-gated Na*,
and T-type Ca?* channels to a lesser extent also contributed to E,.s.. Second, we investigated how varying
somatic/perisomatic membrane potential, by manipulating ion channels of sensory neurons within the
DRG, affected peripheral nociceptive transmission in vivo. Acute focal application of M or Karp channel
enhancers or a hyperpolarization-activated cyclic nucleotide-gated channel blocker to L5 DRG in vivo sig-
nificantly alleviated pain induced by hind paw injection of bradykinin. Finally, we show with computa-
tional modelling how somatic/perisomatic hyperpolarization, in concert with the low-pass filtering
properties of the t-junction within the DRG, can interfere with action potential propagation. Our study
deciphers a complement of ion channels that sets the somatic E.s; of nociceptive neurons and provides
strong evidence for a robust filtering role of the somatic and perisomatic compartments of peripheral
nociceptive neuron.

© 2014 The Authors. Published by Elsevier B.V. on behalf of International Association for the Study of
Pain. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

neuron somata are electrically excitable [3,12,111,122], and
ectopic somatic activity [3,12,77,111,122], along with ectopic

In contrast to the majority of central nervous system neurons,
peripheral somatosensory neurons normally generate action
potentials (APs) at peripheral nerve endings, not at the axon hillock
[2,3]. While somatic APs and electrogenesis are not required for AP
propagation from the periphery to the spinal cord [4], sensory
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peripheral fibre activity [22,23,125], is thought to contribute to
many chronic pain conditions. Moreover, measurements [28,33,
110,113] and simulations [79] suggest that the axonal bifurcation
(t-junction) within dorsal root ganglia (DRG) influences the trans-
mission of spikes on their way to the spinal cord. Hitherto unex-
plained recent clinical studies have established that direct
electrical stimulation (“neuromodulation”) of the DRG provides
efficacious pain relief in neuropathic pain patients [20,95]. Taken
together, these findings suggest that sensory ganglia may play a
much stronger role in peripheral nociceptive transmission than is
generally accepted. Moreover, sensory ganglia may represent a
novel target for pain therapeutics [95]. Yet, surprisingly little has
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been done so far to directly test how electrophysiological proper-
ties of somatic/perisomatic compartment of sensory neuron affect
peripheral somatosensory transmission.

The aims of this study were 1) to identify major ion channels
influencing the resting membrane potential (E..s) of nociceptive
DRG neurons and 2) to investigate if (and how) manipulation with
the activity of these channels within the somatic/perisomatic
compartments of DRG would affect peripheral nociceptive trans-
mission. In the first part we focused on the ion channels that are
known to be expressed in nociceptive DRG neurons and would
be expected to be active at, and possibly contribute to, the
Eest Of these neurons. These channels included 4-aminopiridine
(4-AP)-sensitive voltage-gated K* (Ky) channels [26], slow-activating
M channels (Kv7, KCNQ) [26,58,71,74,92,93,100,101], 2-pore K"
“leak” channels (K2P) [1,80,115], sodium-activated K* channels
(Slo2.x, Kna) [32,91,116]; hyperpolarization-activated cyclic nucle-
otide-gated channels (HCN) [13,30,31,128], low voltage-activated
T-type Ca®* channels (Ca,3.x) [50,90,107,114], and voltage-gated
Na* channels (VGNC) [6,60]. These analyses identified M channels,
4-AP-sensitive Ky and K2P “leak” channels as those having most
significant influence over the E.s. We then investigated how the
hyperpolarization of somatic/perisomatic Ees; in the DRG achieved
by modulating somatic/perisomatic ion channel activities can
influence nociceptive transmission in vivo. Finally, a computa-
tional model of a nociceptive DRG neuron was used to better
understand how the relationship between morphology, membrane
potential, and ion channels active at E..; influence nociceptive
signal propagation. Our study identifies major ion channels that
set somatic E,.s of nociceptive neurons and provides firm evidence
for a much stronger role of sensory ganglia in the peripheral
nociceptive transmission than is generally thought.

2. Materials and methods
2.1. Neuronal cultures and slice preparation

DRG neurons were cultured as described previously ([74,76];
see [59] for step-by-step protocol). Briefly, adult male Sprague-
Dawley rats (180-200 g) were humanely euthanized by cervical
dislocation under the isoflurane anaesthesia. DRG from all spinal
levels were removed and treated at 37°C in Hank’s Balanced Salt
Solution supplemented with collagenase (1 mg/mL; Sigma-Aldrich,
St. Louis, MO, USA) and dispase (10 mg/mL; Invitrogen, Life Tech-
nologies, Grand Island, NY, USA) for ~30 minutes. Ganglia were
then gently triturated, washed twice, and resuspended in 600 pL
culturing media (approx. 500,000 cells per isolation); this suspen-
sion was then plated as dense cultures onto glass coverslips coated
with poly-D-lysine and laminin. Neurons were cultured for 2 to
5 days. No nerve growth factor was added to the culture to avoid
inflammatory insult; we found that densely plated cultures survive
well without trophic factors added. It is of note that our dissocia-
tion protocol provides cultures that are enriched with small-
diameter, high-threshold (presumed nociceptor) neurons because
large-diameter, low-threshold mechanoreceptors mainly die
during trituration due to the mechanical overstimulation, unless
specifically protected [36,59].

For sharp electrode recording, DRG slices were prepared from
12-day-old Wistar rats as described earlier [101], with slight mod-
ifications. Briefly, DRG were embedded in agar and sliced (300 ptm)
in ice-cold extracellular solution using a vibrating blade microtome
(VT100S; Leica Microsystems, Buffalo Grove, IL, USA). Slices were
then stored at room temperature for the remainder of the day in
carbogenated (95% 0,-5% CO,) extracellular solution containing
(in mM): 115 NaCl, 25 NaHCOs;, 11 D-Glucose, 5.6 KCl, 2 MgCl,
1 NaH,PO,, and 2.2 CaCl, (pH 7.4).

2.2. Electrophysiology

Whole-cell and perforated patch recordings in current clamp
configuration were performed at room temperature (unless
indicated otherwise). Patch pipettes (resistance 2-4 MQ) were fab-
ricated from borosilicate glass capillaries using a DMZ-universal
horizontal puller (Zeitz, Martinsried, Germany) or a Sutter P-97
puller (Sutter, Novato, CA, USA). Currents were amplified and
recorded using an EPC-10 patch amplifier and Patchmaster 2.2
software (HEKA Electronik, Lambrecht, Germany) or an Axon patch
700B amplifier and pCLAMP 10.0 software (Axon Instruments,
Union City, CA, USA), and were sampled at a frequency of 5 kHz.
Liquid junction potentials were calculated with the algorithm
developed by P.H. Burry [ 7] using pCLAMP software and subtracted
post acquisition. Continuous current-clamp recording with no cur-
rent injection was used for E,;, monitoring. Linear ramps of currents
from O to 1 nA (1-second duration) were injected for measuring
rheobase and other AP parameters. The extracellular solution con-
tained (in mM): 160 NacCl, 2.5 KCl, 5 CaCl,, 1 MgCl,, 10 HEPES, and
8 glucose, pH 7.4. The intracellular solution for perforated patch
experiments [70] contained (in mM): 150 KCI, 5 MgCl,, 10 HEPES,
pH 7.4. (with 0.2-0.4 mg/mL amphotericin B, Sigma). The intracel-
lular solution for whole-cell recordings from cultured DRG neurons
contained (in mM): 150 KCl, 5 MgCl,, 10 HEPES, 4 adenosine
triphosphate (ATP; magnesium salt), pH 7.4. For whole-cell record-
ings from DRG slices, extracellular solution contained (in mM):
115 NaCl, 25 NaHCOs;, 5.6 KCl, 1 NaH,PO4, 1 MgCl,, 2.2 CaCl,, 11
glucose, pH 7.4, and intracellular solution contained (in mM) 130
KCl, 5 MgCl,, 4.63 CaCl,, 5 EGTA, 5 HEPES, 3 ATP (dipotassium salt),
pH 7.4. Whole-cell current clamp recordings were performed as
previously described [101].

Sharp electrode recordings were performed from DRG slices
held in a submerged-type chamber and perfused with carbogenat-
ed extracellular solution (4-5 mL/min) at room temperature. Elec-
trodes were pulled using a DMZ-universal horizontal puller to
resistances of 70-120 MQ when filled with a solution containing
1 M K-acetate (plus 1 mM KCI; pH 7.2 adjusted with acetic acid).
Some recordings were performed with electrodes filled with 1 M
KCI (plus 10 mM HEPES titrated to 7.2 with potassium hydroxide).
Recordings were made using an SEC-O5L amplifier (npi electro-
tonic, Tamm, Germany) and digitized (10 kHz) with a PC-based
system (Digidata 1200 and Clampex 9.3, Molecular Devices, Sunny-
vale, CA, USA) and analysed off-line (Clampfit 10.1). To measure
the rheobase and to analyse AP properties, a family of 600-ms cur-
rent injections (between —0.35 and +1 nA with 0.05 nA increment)
was used. Because liquid junction potential should be <1 mV [89],
no correction was applied.

To identify neurons as nociceptive, capsaicin (1 pM) has been
applied at the end of the recording in all recording paradigms.
Due to the small number of capsaicin-insensitive neurons and
due to the fact that it was not always possible to apply capsaicin
(eg, due to the premature loss of the recording), data from capsai-
cin-sensitive and capsaicin-insensitive neurons were not analysed
separately.

2.3. Experiments with recombinant channels

In experiments testing specificity of Ky,-modulating drugs,
plasmids encoding human Kv7.2 and Kv7.3 (GenBank accession
no. NM000218 and AF091247) were transfected into Chinese
hamster ovary (CHO) cells using Lipofectamine 2000 (Invitrogen).
In experiments testing effect of ST101 on Cav3.2, the plasmid
encoding human Cav3.2 (GenBank accession no. AF051946; kind gift
from Prof. Chris Peers, University of Leeds, UK) was transfected into
human embryonic kidney (HEK293) cells and whole-cell recordings
were performed. The recordings were made using an Axon 700B
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patch-clamp amplifier (Axon Instruments); signals were filtered at
2 kHz and analysed using pCLAMP 10 (Axon Instruments) and
Origin 7.5 (OriginLab Corporation, Northampton, MA, USA).

2.4. Atomic absorption spectroscopy Rb* efflux assay

Rb* efflux assay to study the modulation of M channels has been
described in detail previously [97]. Briefly, CHO cells stably trans-
fected with Kv7.2 and Kv7.3 were grown to confluence in 96-well
plates. For Rb" loading, the cell culture medium was gently
removed, the monolayer was washed once with 200 puL of Rb* load-
ing buffer containing (in mM): 5.4 RbCl, 5 glucose, 25 HEPES, 150
NaCl, 1 mM MgCl,, 0.8 NaH,PO,4, and 2 CaCl, (pH adjusted to 7.4
with NaOH). Cells were loaded in the same buffer (200 pL per well)
for 3 hours at 37°C, 5% CO,. After loading, cells were washed gently
3 times with wash buffer containing (in mM) 5.4 KCl, 25 HEPES,
150 NaCl, 1 MgCl,, 0.8 NaH,PO,4, and 2 CaCl, (pH adjusted to 7.4
with NaOH). The wash buffer was then replaced with 200 pL of
depolarization buffer containing (in mM) 20 KCI, 25 HEPES, 130
NacCl, 1 MgCl,, 0.8 NaH,PO4, and 2 CaCl, (pH adjusted to 7.4 with
NaOH). The ion channel modulators were added to depolarization
buffer. Channel activation was maintained for 10 minutes. Super-
natant (200 pL from each well) was collected and transferred to a
new 96-well plate before measurement. The concentration of Rb*
in the cell supernatants was determined using an automated Ion
Channel Reader 8000 flame atomic absorption spectrometer (Aur-
ora Biomed, Vancouver, BC, Canada). The concentration-response
curves were fit with the equation y=A; +(A; — Az)/1 + (X/X0)P),
where y is the response; A; and A, are the maximum and mini-
mum response, respectively; x is the drug concentration, and p is
the Hill coefficient.

2.5. Acute focal application of ion channel modulators to DRG in vivo

All surgical procedures were performed under deep anaesthesia
with an intraperitoneal injection of pentobarbital sodium (10-
20 mg/kg) in accordance with the Animal Care and Ethical Com-
mittee of Hebei Medical University (Shijiazhuang, China) under
the International Association for the Study of Pain guidelines for
animal use. Focal application of compounds to the DRG in vivo
was performed as described before [96], with modifications.
Briefly, a midline incision was made at the L4-L6 spinal level of
an adult male rat (Sprague-Dawley; 180-200 g), and the L5 was
identified at the midpoint of a link between both sides of iliac crest.
A 0.8-mm hole (approximately 2 mm off the inferior edge of the
transverse process) was drilled through the transverse process
over the L5 DRG. Approaching of ganglion was verified by the
twitch of the hind paw, at which point the drilling was stopped
immediately. A hooked stainless steel blunt-tip cannula (inner
diameter 0.64 mm, length 4 mm) was forced into the hole and con-
nected to a polypropylene tube (inner diameter 0.41 mm, length
4.5 mm). The incision was closed with sutures and the cannula
was firmly fixed in place with dental cement. Intramuscular injec-
tion of benzylpenicillin (19 mg/0.1 mL) was given immediately
after surgery. Postoperatively, rats were housed individually in
plastic cages with sawdust flooring and supplied with water and
food ad libitum. Animals were left to recover for at least 24 hours
before the experiments were carried out. Animals developing signs
of distress were humanely euthanized by cervical dislocation
under the isoflurane anaesthesia.

To evaluate the effect of focal application of ion channel modu-
lators to DRG on the nociceptive processing, 5 pL of retigabine,
pinacidil, or ZD7288 solution (each at 200 puM) or saline/vehicle
control were injected via the DRG cannula immediately prior to
the hind paw plantar injection of 50 pL of bradykinin (200 puM).
The animal was returned to the cage and video-recorded for

30 minutes. Time spent licking, flinching, and biting the injected
paw over the period of 30 minutes was analysed by the operator
blind to the composition of the injected solution.

In order to verify that drug exposure was limited to the DRG, a
fluorescent dye, 5(6)-Carboxyfluorescein diacetate N-succinimidyl
ester (Sigma; 20 UM in 5 pL), was injected via the cannula
implanted as described above. Dye injection was performed on ani-
mals that received no other injections before; approximately
30 minutes after injection, the animal was sacrificed, both the L5
DRG and proximal inferior part of the lumbar spinal cord were
excised, submerged in Tissue-Tek O.C.T. (Sakura, Alphen aan den
Rijn, The Netherlands), frozen, and sectioned (15 pm) using a
freezing microtome (CM1950, Leica Microsystems). Slices were
then analysed for the presence of dye using confocal microscopy
(TCS SP5 11, Leica Microsystems).

2.6. Computer modelling

A computational model of small-diameter nonmyelinated DRG
neuron was constructed and simulated using NEURON (http://
www.neuron.yale.edu) [42,43] on an Intel-based Macintosh com-
puter (Apple Inc, Cupertino, CA, USA). Simulations were analysed
using IgorPro analysis software (Wavemetrics, Lake Oswego, OR,
USA). Our model neuron had a morphology based on available
literature: the soma was 25 pm in diameter [38,129], with a capac-
itance of 20 pF, while the diameters of the peripheral and central
axons were 0.8 and 0.4 pm, respectively [35,45,79,112]. The stem
axon arising from the peripheral axon had a diameter of 1.4 um
and was 75 pum in length, except where noted. Axonal compart-
ments within the DRG were subdivided into 100 sections for com-
putational accuracy [104]. For all compartments, E s = —60 mV,
Ry, = 10,000 Qcm?, Cp, =1 pF/cm?, and R, =100 Qcm [79]. These
parameters resulted in a model with a somatic input resistance
of 274 MQ [38,129] and an apparent cell capacitance (ratio of
membrane time constant and input resistance: t,,/Ry) of 29.6 pF.
VGNC and delayed rectifier K* channels were expressed in all com-
partments with a density of 0.04 S/cm?, except at the soma, where
VGNC was 0.02 S/cm? [84]. The voltage-dependence of the VGNC
was adjusted to be approximately mid-way between values
reported for Nay1.7 and Nay1.8 channels in DRG [18,106]. M and
HCN channels were inserted in the soma, stem axon, and in most
simulations, extended 100 um into the peripheral and central
axons. Conductance densities for these channels are reported in
units of pA/pF at potentials of —30mV (M channels V;;) and
—100 mV (HCN channels 100% activation). Eea in all compart-
ments was calculated from resting Na*, K, and M channel or
HCN currents to achieve a Es; of —60 mV [33,38]. APs were initi-
ated in the peripheral axon distal to the t-junction by depolarizing
current steps (0.2 nA, 1-ms duration). Where noted, constant
current was injected into the soma (1-100 pA).

2.7. Compounds

List of all ion channel modulators used in this study, as well as
their abbreviations and concentrations and sources are listed in
Table 1. All compounds, except of XE991 (XE), were used at con-
centrations sufficient to produce maximal effect. XE was used at
3 puM (near ICgp), as at saturating concentrations it may affect other
channels such as eagl and Kv4.3 [123].

2.8. Statistics

All data are given as mean = SEM. In the experiments where
normal distribution of data cannot be expected, the following
approach has been applied. 1) Differences between groups of
paired values were analysed using paired Wilcoxon test. 2)
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Table 1
Ion channel modulators used in this study.

Compound Acronym Channel Mode of action [X]* pM Potency Source
Retigabine RTG Kv7 Activator 10 IC50=1.75 uM Present study
XE991 XE Kv7 Inhibitor 3 IC50 ~1 uM for Kv7.2/Kv7.3 [123]
ZD7288 ZD I,/HCN Inhibitor 10° ICsp ~1 UM [82]

(rat DRG)
Bithionol BITH Kna/Kv7 Activator 10 Kv7: EC50=2.15 pM Present study

Kna: ECs50=0.77 uM [127]
Loxapine LOX Kna Activator 10 ECso ~4 UM (Slo2.2) [9]
Bepridil BEP Kna Inhibitor 20 IC50 ~1 uM (Slo2.2) [127]
4-Aminopiridine 4-AP Kv Inhibitor 2000° IC50 ~200 uM (Kv1.x) Tocris
Pinacidil PIN Katp Activator 10 ECsp ~1.5 uM [34]
Glibenclamide GLIB Katp Inhibitor 10 ICsp ~10 nM (rat DRG) [55]
Tetrodotoxin TTX Na, Inhibitor 0.1 1-10 nM Tocris
A803467 A803 Na,1.8 Inhibitor 10 ECs0 = 8 nM (hNa,1.8) [49][117]

Na,1.9 EC50 ~1 pM (TTX-r VGNC current in DRG)

Mibefradil MIB Ca,3 Inhibitor 3 IC509 ~0.15-1.5 uM [81]
ST101 ST101 Ca,3 Activator 0.001 hCa,3.2: ICs0=0.12 nM Present study
Hydroxy-o-sanshool SAN K2P Inhibitor 100 IC50 ~30-50 uM (TASK-1, TRESK) [8]
Bupivacaine BUP K2P Inhibitor 100 IC50 ~40 uM (TASK-1, TASK-3) [83]
Lamotrigine LAM K2P Inhibitor 100 ICs0 ~30 uM (TRESK in rat DRG) [54]
Doxapram DOX K2P Inhibitor 100 IC50=0.4 uM (TASK-1) [83]

ICs0 = 37 UM (TASK-3)
Riluzole RIL K2P Na, Activator 100 ECs0 ~50 uM (TRAAK, TREK-1) [29]

Inhibitor

Capsaicin CAP TRPV1 Activator 1 ECs0 ~10 nM [16]

@ Stated are the concentrations used in the resting membrane potential experiments; in some other types of experiments different concentrations were sometimes used;

these instances are indicated in the text.

> 50 uM was used in sharp electrode recordings from dorsal root ganglion (DRG) slices.

€ 1 mM was used in sharp electrode recordings from DRG slices.

Kruskal-Wallis analysis of variance (ANOVA) was used to compare
among multiple groups. 3) Pairs within multiple groups were
analysed by Mann-Whitney test with Bonferroni correction. 4) Dif-
ferences in proportions of responsive cells were analysed using
Fisher’s exact test. In the case where normal distribution was con-
firmed, t-test (paired or unpaired, as appropriate) was used; where
indicated, multiple groups were compared using one-way ANOVA
with Bonferroni post hoc test. Differences were considered signifi-
cant at P < 0.05. Statistical analyses were performed using Origin
9.0 (OriginLab Corporation, Northampton, CA, USA), Minitab 16
(Minitab Inc, State College, PA, USA), and Prism 6.01 (GraphPad
Software Inc, La Jolla, CA, USA).

3. Results

Membrane potential (E;) of a neuron during resting state
(resting membrane potential, E.s) results from the steady-state
interaction of a number of membrane conductances, mostly
represented by ion channels [41,51], with small contribution by
electrogenic pumps [61,63]. In order to identify ionic conductances
that contribute to the somatic E.s of nociceptive neurons, we
measured changes in E,, (AE,) in response to pharmacological
inhibition or activation of ion channels expected to be active at
voltages near the E .. Our main experimental model was cultured
small-diameter (~20 pum) DRG neurons with whole-cell capaci-
tance of 26.3 £ 1.3 pF (n = 32); these neurons were predominantly
capsaicin sensitive (71% or 174/245 of such cells responded to
1 UM capsaicin). Responsiveness to capsaicin indicates expression
of nociceptive neuron marker TRPV1 [65], and thus, we describe
the population of neurons under investigation as predominantly
small-diameter nociceptors, although contribution of a small num-
ber of neurons of other modalities to this population cannot be
excluded.

Accurate measurement of E..s; can be influenced by the record-
ing configuration, as well as the experimental preparation. There-
fore, we used a combination of approaches to measure E, of
small DRG neurons. Specifically, 1) perforated-patch and 2)
whole-cell recordings were made from cultured sensory neurons;

3) sharp electrode recordings and 4) a limited number of whole-
cell recordings were made from sensory neurons in acute DRG
slices. Remarkably, similar values for E.s, near —60 mV, were
observed across all experiments (Table 2). For whole-cell experi-
ments there was no significant drift of E,, value after the breaking
into the neuron, indicating little influence of the intracellular
solution exchange during the recording period. Likewise, in
sharp-electrode recording experiments, replacing the K-acetate-
based pipette solution with the KCl-based solution resulted in no
significant difference. Our E,.s; values were very close to those
reported previously [3,5,38,71,72,103,129] and show that Es of
both cultured and acute DRG neuron somata are maintained within
the same voltage range.

3.1. Channels contributing to E,.s in cultured nociceptive DRG neuron
somata

To identify ion channels contributing to the E..s of nociceptive
neurons, we used perforated patch current clamp recordings to
measure AE,, in cultured, small-diameter DRG neurons in response
to a set of well-characterized ion channel blockers or enhancers for
M channels, Ky, Katp, Kna, HCN, Ca,3x, and Nay channels. It has to
be noted that if a given ion channel is not tonically active at Eest,
then its pharmacological activation or enhancement will not
inform about the channel contribution to E..s.. Responses of vary-
ing amplitudes were observed for most compounds in various pro-
portions of neurons (Fig. 1). Fig. 1A and B summarizes these
experiments, with panel A depicting responses to compounds that
produced hyperpolarization and panel B depicting these produced
depolarization. Number and percentage of neurons responsive to
each compound (those where the absolute value of AE, was
>1 mV) is listed above each dataset. Fig. 1C compares the mean
AE,, values for each compound determined from the subset of
responsive neurons only. Exemplary E, responses are given in
Fig. 2 and statistical analysis of the data is summarized in Table 3.

The most robust and most abundant responses were to the
modulators of M-type K" channels. M channel subunits Kv7.2,
Kv7.3, and Kv7.5 are expressed in most DRG neurons [58,93,100]
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Table 2
Electrophysiological properties of the DRG neuron somata.

Recording mode Erest, mV AP amplitude, mV Rheobase, nA
Perforated patch current clamp (culture) -60.1+£0.9 62.4+3.0 0.24 +0.03
n=160 n=38 n=38
Whole-cell current clamp (culture); first sweep -59.3+3.1 N/A N/A
n=9
Whole-cell current clamp (culture); steady-state —60.6 +2.0 N/A N/A
n=9
Sharp electrode recording (slice); KCl-based pipette solution® -61.9+3.2 703 +5.2 0.46 + 0.01
n=10 n=4 n=4
Sharp electrode recording (slice); K-acetate based pipette solution® -60.2+1.2 60.0 +4.1 0.46 £ 0.04
n=66 n=20 n=20
Whole-cell current clamp (slice); steady-state -60.4 +3.9 N/A N/A
n=6

2 All the Ees; data except of these recorded with the sharp-electrode technique are corrected for the liquid junction potential. It is
assumed that in sharp electrode recording, the junction potential is small (within 1 mV) [89].

and, in particular, in small-diameter, TRPV1-positive nociceptors
[76,100]. M channel enhancer, retigabine (RTG; 10 puM; Figs. 1
and 2A-D) hyperpolarized E,es by —10.4 £ 0.8 mV in 36 responsive
neurons (out of a total of 44; 82%), while M channel inhibitor XE
(3uM) induced similar magnitude of depolarization
(9.4+0.9mV) in 19 responsive neurons (out of a total of 29
neurons; 66%). These findings show that M channels significantly
contribute to the E..s of an average small-diameter nociceptive
DRG neuron soma.

Small-diameter nociceptors express other Kv channels, such as
4-AP-sensitive Kv1.4 [99,121], Kv2s [10,119], and Kv3.4 [15,57]
(reviewed in [26]). 4-AP (2 mM), which has little effect on M chan-
nels, produced a sizable depolarization of 7.4+0.8 mV in 8/11
neurons (73%; Figs. 1 and 2I, J). This suggests that some Ky
channels expressed at nociceptor neuron cell bodies are partially
open near the E.. The effect of 4-AP was not significantly
different from that of XE (Table 3).

Modulation of Ky, and Karp channels had more modest effects
on Ees. Kna blocker bepridil (BEP, 20 uM) [127] depolarized 11/
20 (55%) neurons by 5.9 + 0.7 mV. A recently identified Ky, enhan-
cer loxapine (LOX; 10 uM) [9] produced only modest hyperpolar-
ization of —1.5 £ 0.3 mV in a proportion of neurons (4/9; 44%; see
Figs. 1A, C and 2C). Another Ky, enhancer, bithionol (BITH,
10 uM) [126,127], produced stronger hyperpolarization of
—-10.2 £ 0.7 mV in 14/19 (83%) neurons. However, we found that
BITH also potently enhanced recombinant M channels (Kv7.2/
Kv7.3) with ECso of 4.9 + 1.08 uM (Fig. 3A, B). Therefore, BITH has
been excluded from further analyses. BEP and LOX had no effect
on recombinant M channel activity (Fig. 3A, B). The Karp enhancer
pinacidil (PIN; 10 uM) induced a moderate hyperpolarization of
—4.6 £0.3 mV in 8/11 (73%) neurons (Figs. 1 and 2F), which was
significantly weaker than that produced by RTG (Table 3). In
contrast, the Karp blocker glibenclamide (GLIB; 10 uM) failed to
produce an effect. This suggests that functional Karp channels are
present in many nociceptors, in accordance with recent discovery
of analgesic efficacy of peripheral injections of PIN [27], but they
are not active at rest and do not contribute significantly to E .

Several K2P channel subunits (ie, TASK1-3, TREK1-2, TRAAK and
TWIK-1-2, and TRESK) are expressed in DRG [80,115] with TREK-1,
TREK-2, and TRESK abundant in small-diameter nociceptors
([1,53]; reviewed in [26]). Unfortunately, all available pharmaco-
logical modulators of K2P channels are not very selective, therefore
we tested the effect of 4 different K2P channel blockers on DRG
neuron’s E.s: bupivacaine (BUP, 100 uM; inhibits TREK-1, TASK-
1, and TASK-2, maybe others [83]), lamotrigine (LAM, 100 puM;
inhibits TRESK in DRG [54]), doxapram (DOX, 10 puM; inhibits
TASK-1, TASK3 [83]), and hydroxyl-a-sanshool (SAN, 100 pM;
inhibits TASK-1, TASK-3, and TRESK [8]). All 4 blockers produced

a very similar effect, each impacting about 50% of neurons (Figs. 1
and 2G, I); BUP, LAM, DOX, and SAN depolarized 5/9 (56%), 5/10
(50%), 10/17 (59%), and 4/10 (40%) neurons by 6.5+ 1.4mV,
4.8+0.9mV, 4.9 £04 mV, and 6.3 + 1.4 mV, respectively. We also
tested the K2P channel enhancer, riluzole (RIL; 100 uM [83]),
which hyperpolarized 11/19 (58%) DRG neurons by —5.7 + 0.8 mV
(Figs. 1 and 2H); the effect was significantly less strong as com-
pared to RTG (Table 3). RIL also inhibits persistent Na* current
[120], thus the effect of K2P enhancement on E. under our
recording conditions can be an overestimation. The effect of K2P
modulators was somewhat underwhelming given the previous
estimates; thus, Kang and Kim [53] reported that TREK-2-like
channels alone contributed ~70% of the resting K* current in a
third of small-diameter cultured rat DRG neurons. siRNA TRECK-
2 knockdown resulted in a more depolarized E,s (by about 10
mV) in a sub-population of isolectin B4 (IB4)-positive small-
diameter nociceptors [1]. Since TREK-2 and TRAAK display high
sensitivity to temperature and are much more active at 37°C com-
pared to room temperature [52], we tested if contribution of K2P
channels to E is higher at 37°C. In these experiments we used
a cocktail of K2P inhibitors (100 pM BUP, 100 uM LAM, and
100 uM DOX) to evaluate the effect of the entire pool of K2P chan-
nels. Indeed, we found that at 37°C, the cocktail of K2P inhibitors
depolarized Es by 10.6+1.0mV in 11/15 (73%) small DRG
neurons (Fig. 4), which is in good agreement with [1]; the effect
was significantly stronger as compared to the effects of LAM and
DOX at room temperature (Mann-Whitney test with Bonferroni
correction). Inhibition of M channels with XE at 37°C produced
very similar effect: depolarization by 10.4 + 1.1 mV in 15/17 small
DRG neurons (88%). XE effect at 37°C had a tendency to be slightly
higher and more prevalent as compared to that at room tempera-
ture, but this did not reach significance (Mann-Whitney test, Fish-
er's exact test). These experiments suggest that at 37°C, the
contribution of K2P channels to E,c in the studied population of
small DRG neurons is higher and is similar to that of M channels.

We then turned our attention to channels that generally pro-
duce inward currents. Hyperpolarization-activated nonselective
cation channels HCN underlie neuronal I;;; HCN1 and HCN2 are
expressed in small-diameter nociceptors [30,31]. The HCN blocker
ZD7288 (ZD; 10 uM) produced moderate hyperpolarization by
—-3.5205mV in 11/19 (58%) neurons, suggesting that there is
detectable background HCN activity in many cultured DRG somata
(Figs. 1 and 2B). The effect of ZD was significantly less pronounced
as compared to RTG (Table 3). The effect of ZD was not increased
when measurements were repeated at 37°C (not shown).

Most voltage-gated Ca®* channels activate at voltages more
depolarized than —60 mV, with the exception of T-type Ca?* chan-
nels (Ca,3), which have an activation threshold near or even below
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Fig. 1. Effects of ion channel modulators on the resting membrane potential of small dorsal root ganglia (DRG) neurons. (A,B) Scatter plots of changes of membrane potential
(AEp) in cultured small-diameter DRG neurons in response to the application of ion channel modulators; panel (A) summarizes hyperpolarizing effects and panel (B)
summarizes depolarizing effects (see Table 1 for complete list of compounds). Values from capsaicin-sensitive (red) and -insensitive (green) neurons, as well as from neurons
untested for capsaicin sensitivity (dark grey), are identified. Horizontal black bars in every group depict mean values of all neurons tested. Number of responsive neurons out
of total neurons tested for each compound are indicated above each group as X/Y, where X is a number of responsive neurons and Y is a total number of neurons tested;
percentage of responsive neurons for each compound is also indicated. (C) Bar chart summarizes effects of each of the compounds tested taking into account responsive
neurons only (AE;, changes below 1 mV, an average noise amplitude, were considered as no effect). Dotted lines indicate level of depolarization (upper line) or
hyperpolarization (lower line) upon M channel inhibition or enhancement, respectively (as indicated).

this voltage [94]; Ca3.2 is the predominant subunit in small-
diameter nociceptors [102,114]. The T-type Ca®* channel blocker
mibefradil (MIB; 3 uM) did not significantly affect E,g; it only pro-
duced a modest 1-mV hyperpolarization in 1 of 6 (17%) neurons,
suggesting that T-type channels in most nociceptors at rest are
not active. T-type Ca?* channels are also potently and selectively
inhibited by the carbon monoxide donor CORM-2 [11]. However,
similar to MIB, CORM-2 (3 uM) produced only marginal 1-2 mV
hyperpolarization in cultured DRG neurons (not shown). It has been
reported that spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-one

(ST101; ZSET1446) potentiates Ca,3.1 currents with sub-nanomolar
potency [88]. Therefore, we tested the effect of ST101 on E,eg in
DRG. However, since DRG express little (if any) Ca,3.1, and the
main T-type Ca®* channel subunit in these neurons is Ca,3.2
[114], we first tested the effect of ST101 on the recombinant
Ca,3.2 channels. Indeed, currents through human Ca,3.2 overex-
pressed in CHO cells were potently augmented by ST101 in a con-
centration-dependent manner (Fig. 5A-B; ECso=0.12 £0.04 nM,
maximal effect at 45.4+3.2%). When applied to DRG neurons,
1 nM ST101 induced depolarization of 3.8 £ 1.2 mV in 9/14 (64%)
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Fig. 2. Exemplary recordings of the membrane potential changes in response to modulation of resting currents in small dorsal root ganglia (DRG) neurons. (A-L) Exemplary
time courses of E;,, recorded with whole-cell current clamp from cultured small DRG neurons. The compounds were applied during periods indicated by grey bars (see Table 1
for complete list of compounds). Statistical analysis of responses is presented in Fig. 1 and Table 3.

Table 3
Effects of ion channel modulators on the resting membrane potential of small DRG neurons; statistical analysis.
Modulator Difference from baseline (paired Difference in efficacy (as compared to Difference in proportion of responding
Wilcoxon signed ranks test) Kv7 modulator; Kruskal-Wallis ANOVA  neurons (as compared to Kv7

with subsequent Mann-Whitney test & modulator; Fisher’s exact test). P-value
Bonferroni correction)

Hyperpolarization
RTG - -
LOX ns Yes 0.03
PIN * Yes 0.67
ZD o Yes 0.06
MIB ns Yes 0.001
TTX e Yes 0.67
A803 ns Yes 0.000
RIL o Yes 0.06

Depolarization
XE ok _ _
BEP * No 0.55
4-AP e No 1.00
GLIB ns Yes 0.000
ST101 . No 1.00
SAN ns No 0.26
BUP * No 0.70
LAM * No 0.46
DOX - No 0.75

DRG, dorsal root ganglia; ANOVA, analysis of variance; RTG, retigabine; LOX, loxapine; PIN, pinacidil; ZD, ZD7288; MIB, mibefradil; TTX,
tetrodotoxin; A803, A803467; RIL, riluzole; XE, XE991; BEP, bepridil; 4-AP, 4-Aminopiridine; GLIB, glibenclamide; SAN, hydroxy-a-sanshool;
BUP, bupivacaine; LAM, lamotrigine; DOX, doxapram.

*, **, ** Denote difference from baseline at P < 0.05, P < 0.01 and P < 0.001 respectively.
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Fig. 3. Characterization of Ky, channel modulators. (A,B) Bithionol is an M channel
enhancer. (A) Effects of BITH (10 uM), RTG (10 uM), LOX (10 uM), and BEP (10 uM)
on the recombinant Kv7.2/Kv7.3 channels heterologously overexpressed in Chinese
hamster ovary cells. Recordings were made using whole-cell patch clamp; voltage
protocol is depicted above the traces. Dotted line represents 0 pA current level. (B)
Concentration dependency of Ky, modulators and RTG on the depolarization-
induced Rb* efflux (see Material and Methods). RTG and BITH enhanced Rb* flux
through the recombinant Kv7.2/Kv7.3 currents with ECso of 0.7 +0.09 pM and
4.9 +1.08 nuM, respectively; data were fit to the logistic equation (see Materials and
Methods); n=5. Data for LOX and BEP did not meaningfully fit to the logistic
equation. BITH, bithionol; RTG, retigabine; LOX, loxapine; BEP, bepridil.

small neurons tested (Figs. 1 and 2L). The fact that ST101 did not
affect Ca,3.2 voltage dependence significantly (Fig. 5B;), but
strongly increased current amplitudes at voltages between —60
and —-30mV, suggests that at E.s of ~—60mV native T-type
Ca?* channels in DRG neurons are just on the margin of their acti-
vation threshold, and thus, may be activated by relatively small
depolarizations.

Finally, we tested the contribution of VGNC; small, nociceptive
DRG neurons most abundantly express tetrodotoxin (TTX)-sensi-
tive Na,1.7, Na,1.6, and TTX-resistant Na,1.8 and Na,1.9 VGNC
subunits; reviewed in [21]. In a small fraction of neurons (4/43,
9%), the blocker of TTX-resistant VGNC Na,1.8 and Na,1.9,
A803467 (A803; 10 uM) induced sizable hyperpolarization of
—10.3 £ 0.5 mV (Figs. 1 and 2J). These few neurons that did respond
to A803 had a tendency to be more depolarized as compared to an
average small DRG neuron (—46.2+4.6mV, n=4 vs.
—61.4+3.1 mV, n=43). It is possible that heterogeneous expres-
sion of these channels contributes to a more depolarized E,es; in
these particular neurons. TTX-sensitive VGNC may also contribute
to Erest [24]. Accordingly, in most neurons (9/10; 90%), TTX induced
a small hyperpolarization of —3.3 £ 0.3 mV (Figs. 1 and 2K). Effects
of both A803 and TTX were significantly less strong as compared to
RTG (Table 3).

3.2. Acute DRG slices

Dissociated DRG neurons in culture provide for a convenient
experimental model. However, these cells are axotomized and
maintained in vitro, and thus, may not necessarily maintain their
native phenotype; therefore, data obtained from such neurons
may not reflect the physiology of a neuron in situ. We therefore
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Fig. 4. Effects of two-pore K* “leak” channel (K2P) and M channel inhibition on the
resting membrane potential of small dorsal root ganglia neurons at 37°C. (A) Scatter
plot similar to that shown in Fig. 1B, but the recordings were made at 37°C. (B) Bar
chart summarizes effects of XE991 (XE; 3 uM) and a cocktail of K2P inhibitors
(100 uM BUP, 100 uM LAM, and 100 uM DOX) taking into account responsive
neurons only. (C;, C;) Exemplary experiments are depicted. BUP, bupivacaine; LAM,
lamotrigine; DOX, doxapram.
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Fig. 5. ST101 is a Ca,3.2 channel enhancer. (A;, A;,) Effects of ST101 (1 nM) on the
recombinant Ca,3.2 channels heterologously overexpressed in HEK293 cells.
Recordings were made with whole-cell patch clamp; voltage protocol is depicted
above the traces in (A). Shown in (A) is a time-course of the effect of ST101
application (indicated by the grey bar) on the peak Ca,3.2 current amplitude.
Shown in (A) are the exemplary current traces; dotted line represents 0 pA current
level. (B;) Mean current-voltage relationships for the recombinant Ca,3.2 before
(black circles) and after (red circles) the application of 1 nM ST101 (n = 7). = Denotes
difference from baseline at P < 0.05 (paired t-test). (B2) Concentration dependency
of the ST101 augmentation of Ca,3.2; ECso=0.12 nM * 0.04 nM; maximal increase
of peak current amplitude = 45.3 + 3.2%; n = 3-9 for individual data points; the data
were fit to the logistic equation (see Materials and Methods).
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performed additional experiments on neurons in acutely prepared
DRG slices. As can be seen from Table 2, the basic electrophysiolog-
ical characteristics of DRG somata as recorded with sharp intracel-
lular electrodes are quite similar to these recorded with whole-cell
patch electrodes (somewhat higher rheobase seen in sharp
electrode recordings is likely to reflect larger leak currents
introduced by sharp microelectrodes). Particularly relevant to this
study is the fact that the values of Es of cultured and acute DRG
neuron somata are within the same voltage range; this ensures
that the ion channels that remain active near —60 mV (which we
have focused on in this study) are likely to be relevant to the main-
tenance of E,.;; of DRG somata both in situ and in vivo.

In acute DRG slices, we confirmed the key results obtained with
cultured DRG neurons (Fig. 6). Since the E baselines recorded
with sharp electrodes from DRG slices were on average noisier as
compared with these recorded using the whole-cell current clamp
from cultured DRG neurons, it was difficult to unambiguously
classify slice recordings as “responding” or “nonresponding” to a
compound (with our threshold parameter for response being set
at AE,, > 1 mV). Therefore, presented in Fig. 6A is a scatter plot
showing all the individual responses recorded in such experi-
ments; mean AE;, data recorded from all neurons in each group
are also given (horizontal black bars). These mean values are likely
to underestimate true effects due to the contribution of nonre-
sponding cells. Again, the strongest effect on E.s was found in
response to enhancing or blocking M channels; thus, XE depolar-
ized and RTG hyperpolarized E.st by 7.8 +1.2mV (n=20) and
—44+1.2mV (n=17), respectively. Blocking of HCN channels
with ZD (50 uM) resulted in more modest hyperpolarization
(-2.0£1.3mV; n=11), while inhibition of K2P channels with
BUP and Ky channels with 4-AP induced comparably more moder-
ate depolarization: 3.96 + 0.89 mV; n=8 and 2.87 £+ 1.08 mV, n =7,
respectively).

It also has to be noted that in these sharp electrode recordings
we were unable to select neurons by size, and therefore, these
recordings were blind from a randomized neuron population. In
some neurons we were able to test sensitivity to capsaicin
(Fig. 6A), but it was not always possible to apply multiple drugs
due to the recording stability issues. However, since the majority
(up to 70%) of cell bodies in DRG are small-diameter nociceptors
[37,64,86], it is reasonable to suggest that the majority of our
sharp-electrode recordings were indeed performed on this type
of neurons. This is consistent with the observation that among
the neurons that were tested for the capsaicin sensitivity in this
recording paradigm, 23/38 (60.5%) were capsaicin sensitive. These
considerations suggest that our sharp electrode recordings are lar-
gely representative of nociceptive neurons.

3.3. Effect of somatic/perisomatic hyperpolarization on pain signalling
in vivo

In order to evaluate the importance of somatic/perisomatic Ees;
on nociceptive transmission in vivo, we adapted a method of focal
DRG drug injection developed by Puljak and colleagues [96] (with
modifications; see Materials and Methods). In this approach, a can-
nula is inserted into a hole drilled through the transverse process
of L5 vertebra; the cannula allows delivery of small volumes of
drugs directly to the DRG (Fig. 7A, top panel). In order to verify that
this injection technique delivers drugs specifically localized to
DRG, and there is no “spill over” to the spinal cord, we injected a
fluorescent dye 5(6)-Carboxyfluorescein diacetate N-succinimidyl
ester (5 pL; 20 uM) through the cannula and tested the extent
to which dye spread from the DRG to the proximal spinal cord.
Confocal fluorescent imaging revealed abundant fluorescence in
the DRG but a complete lack of staining in the spinal cord
(Fig. 7B, see Materials and Methods for the experimental details).
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Fig. 6. Effect of ion channel modulators on the resting membrane potential of
dorsal root ganglia (DRG) neurons recorded with sharp microelectrodes from the
acute DRG slices. (A) Scatter plot of changes of membrane potential (AE,,) in DRG
slice recordings in response to the application of ion channel modulators. Values
from capsaicin-sensitive (red) and -insensitive (green) neurons, as well as from
neurons untested for capsaicin sensitivity (dark grey) are identified. Horizontal
black bars in every group depict mean values of all neurons tested. Number of
recordings is indicated above each group. *, **, and *** denote difference from
baseline at P < 0.05, P < 0.01, and P < 0.001, respectively (paired Wilcoxon test). (B)
Exemplary time courses of E,, recorded using sharp-electrode method from fresh
DRG slices during application of XE (B4), RTG (B,), and CAP (Bs). XE, XE991; RTG,
retigabine; CAP, capsaicin.

Next, we tested the effects of focal DRG application of ion chan-
nel modulators on the pain induced by the hind paw injection of
bradykinin (BK). BK is a potent endogenous proinflammatory and
pain-inducing peptide (algogene) [25,56]; it produces obvious pro-
tective or “nocifensive” behaviour when injected into the hind paw
of rats (flinching, biting, and shaking of the injected paw) [76].
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Fig. 7. Focal application of ion channel modulators to dorsal root ganglia (DRG) reduces peripheral nociceptive transmission in rats in vivo. (A) Schematic of the DRG cannula
implant (modified from [96]). (B) Brightfield (left) and fluorescent (right) images of DRG (top) and proximal dorsal spinal cord (bottom) after the focal application of a
fluorescent dye, 5(6)-Carboxyfluorescein diacetate N-succinimidyl ester (20 uM in 5 pL) via the DRG cannula (see Materials and Methods). Only the dorsal section of the
spinal cord is shown, however, similar lack of staining has been seen in all other sections. (C) Focal ipsilateral application of ZD, PIN, or RTG to DRG reduces nocifensive
behaviour produced by hind paw injection of bradykinin (BK; 200 pM, 50 pL). Focal application of LOX (200 puM, 5 pL) and application of RTG to L5 DRG contralateral to the
side of BK injection (grey bar) had no effect on BK-induced nocifensive behaviour. Bar chart summarizes the time of nocifensive behaviour (time spent licking, flinching, and
biting the paw) over the period of 30 minutes after the BK injection. Immediately prior to the hind paw injection of compounds, animals were given injection of RTG (5 pL,
200 uM), ZD (5 pL, 200 uM), PIN (5 pL, 200 nM), saline (5 pL), or 0.1% dimethyl sulfoxide (DMSO) in saline, 5 pL. From left to right columns correspond to the following
injections: hind paw injection of BK only (“BK”); hind paw saline + focal DRG application of saline (“Saline+Saline”); hind paw BK + focal saline (“BK+Saline”); hind paw
BK + focal DMSO (“BK+DMS0"); hind paw BK + focal ZD (“BK+ZD"); hind paw BK + focal PIN (“BK+PIN"); hind paw BK + focal RTG (“BK+RTG"); hind paw BK + contralateral focal
RTG (grey bar; “BK+RTG-contra”); hind paw BK + focal LOX (“BK+LOX"). In the column labels, red font denotes plantar paw injections and black font denotes focal application
to DRG through the cannula. *, **, and *** denote difference from baseline at P < 0.05, P < 0.01, and P < 0.001, respectively (one-way analysis of variance with Bonferroni
posttest). ZD, ZD7288; PIN, pinacidil; RTG, retigabine; LOX, loxapine.

Accordingly, injection of BK (50 puL of 200-puM solution) into the
hind paw of cannula-implanted rats induced strong nocifensive
behaviour, which was not affected by the focal preinjection of
vehicles (0.1% dimethyl sulfoxide or saline) to DRG (Fig. 7C; see
Materials and Methods for further details).

We then tested compounds that significantly hyperpolarized
Erest based on our in vitro experiments. Specifically, drugs that
enhanced the activity of M and Karp channels or blocked HCN
channels were injected into the DRG prior to BK administration
to the ipsilateral hind paw. Focal preapplication of RTG (5 pL,
200 pM), PIN (5 pL; 200 uM), or ZD (5 pL; 200 uM) significantly

attenuated BK-induced nocifensive behaviour (P < 0.01; one-way
ANOVA with Bonferroni post hoc test, Fig. 7C). RTG produced the
largest attenuation, although difference with PIN and ZD did not
reach significance (one-way ANOVA with Bonferroni post hoc test).
Importantly, focal DRG application of RTG to the L5 DRG contralat-
eral to the side of BK injection did not produce any reduction in
nocifensive behaviour (Fig. 7C; one-way ANOVA with Bonferroni
post hoc test). This complete lack of effect of the contralateral focal
RTG application is another strong piece of evidence against any
spinal effects of a drug applied to DRG via cannula: dorsal roots
that ascend from DRG to the spinal cord in rats are about 3 cm long
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[112], thus, a substance that diffused that distance and reached the
spinal cord in a concentration sufficient to produce an effect would
definitely produce a bilateral action. Ky, enhancer LOX, which only
produced marginal hyperpolarization in cultured DRG neurons,
was without an effect (Fig. 7C).

It has to be acknowledged that while focal application of drugs
to DRG via cannula resulted in no significant spill-over to the spinal
cord, the drugs applied in such a manner would affect not only
DRG somata but also a perisomatic compartment: stem, t-junction,
and adjacent segments of peripheral and central axon. In order to
investigate how somatic/perisomatic hyperpolarization may affect
transmission of nociceptive signals from the periphery to the
spinal cord via the t-junction, we developed a computational
model of a small-diameter unmyelinated DRG neuron.

3.4. Influence of DRG hyperpolarization on axonal AP propagation: a
computational model

We have shown that the injection of compounds into the DRG
that hyperpolarize sensory neurons in vitro (eg, RTG and ZD)
reduced nocifensive behaviour in vivo. Our working hypothesis is
that exogenously induced hyperpolarization enhances the likeli-
hood of AP failure across the t-junction, the point of lowest safety
factor for AP propagation [19,33,79,109], and in turn reduces the
nocifensive response. Successful AP propagation through a branch
point depends on the relative impedance loads between the parent
axon and its daughters, as well as their active properties, the length
of the stem axon, and any contribution by the soma (depending on
its electrotonic proximity). Using the dimensions for peripheral,
central, and stem axons from the literature ([35,45,112]; Fig. 8A),
we developed a reduced biophysical model of the DRG portion of
an adult, mammalian small-diameter unmyelinated neuron to
determine how variations in membrane potential produced by
ion channel enhancement or blockade affects AP propagation.
Active conductances were limited to a fast VGNC conductance
(Gna) between the activation ranges of Nay1.7 and Nay1.8 chan-
nels, a delayed rectifier K* conductance (Ggpg), KCNQ current (M
channels), and HCN channels. Channel densities (Gy, and Ggpg)
were adjusted to achieve reliable propagation up to a stimulus fre-
quency of approximately 100 Hz [33]. The conduction velocity of
the model neuron was 0.33 m/s, as expected for thin, unmyelinated
fibres [33,62]. Somatic APs were 76 mV, somewhat higher than in
our recordings of 60-70 mV, but within values reported in the lit-
erature [33,79,129]. The goal of the model was to identify those
factors limiting AP propagation from the periphery to the spinal
cord, rather than to build a highly detailed and complete reconsti-
tution of nociceptive neuron electrical response.

Simulated 30-Hz trains of APs initiated in the peripheral axon, a
firing frequency within the upper range for unmyelinated nocicep-
tive fibres [14,108], reliably propagated through the DRG (Fig. 8B,).
Potentials at the t-junction had a characteristic waveform; the
spike invading the bifurcation was reduced in amplitude and was
immediately followed by a larger spike generated in the stem axon.
As the AP progressed into the central axon, its amplitude increased
with distance from the t-junction. At this stimulus frequency,
spike propagation was reliable with M channel current (Iy)
densities from 0 and up to 240 pA/pF, while densities of 2.5 to over
20 pA/pF are reported in the literature [17,74,93,100].

We then simulated the effects of enhancing M channels with
RTG by increasing Iy 1.5-fold and shifting V;,; to —60 mV
[72,118]. The minimal initial Iy; density required to produce a fail-
ure of spike propagation through the DRG, determined as the loss
of at least one action potential during a 30-Hz train of 10 spikes,
was 0.9 pA/pF (Fig. 8B,), which is on the lower end of what was
reported in the literature [17,74,93,100]. Under RTG conditions
(Im density = 1.35 pA/pF and V;;; = —60 mV), somatic membrane

was hyperpolarized by —3.2 mV. All APs reaching the t-junction
were reduced in amplitude, but only 4 of the 10 spikes triggered
a regenerative and propagating AP in the central axon. As reported
previously, AP generation at the soma was not required for AP
propagation from the peripheral axon to the central axon [3].
When Iy, density was increased to 1.575 pA/pF (initial Iy, density
=1.05 pA/pF) and V;; was set to —60 mV, somatic E;, hyperpolar-
ized to —63.6 mV and AP propagation through the DRG was com-
pletely abolished, not only for high-frequency stimulation, but
for lower frequencies (<30 Hz) as well (Fig. 8B,). The transition
between reliable conduction and failure occurred through a small
voltage window, with the hyperpolarization produced by M chan-
nel enhancement.

Was AP failure due to hyperpolarization, the increased mem-
brane conductance, or both? To answer this question we tested
whether comparable hyperpolarization produced by somatic cur-
rent injection interfered with AP propagation. Hyperpolarizing
the soma by —3.7 mV with constant somatic current (—14 pA)
had no effect on the reliability of AP propagation (Fig. 8B3). Only
when somatic hyperpolarization was further increased to
—64.4 mV (—4.4 mV below E.s) was spike propagation blocked
(Fig. 8B3). These results suggest that enhancing M channels
reduced AP transmission across the model’s t-junction by both
hyperpolarization and increased membrane conductance and,
moreover, support the hypothesis that the physiological effects of
RTG observed in vitro (see Fig. 6) are sufficient to account for its
effects on AP propagation in vivo.

To further characterize how RTG conditions affect spike propa-
gation across the t-junction, in the model we plotted E,;, as a func-
tion of distance along the peripheral and central axonal segments
flanking the t-junction at regular time intervals (0.15 ms) under
basal and RTG conditions. Under basal conditions (Iy; density =
0.9 pA/pF, Vq2=-30mV), as the AP invaded the t-junction, its
amplitude decreased to a minimum at the t-junction (Fig. 8C;). A
regenerative spike in the central axon was subsequently generated
and increased in amplitude with distance from the t-junction. In
contrast, under RTG conditions (Fig. 8C;), the spike leaving the
t-junction decreased in amplitude and widened with distance in
a manner more consistent with the passive spread of potential.

As stated above, the low safety factor for AP propagation at the
t-junction depends on the combined contributions of axonal bifur-
cation and the active properties of the membrane. The importance
of the bifurcation is illustrated in Figure 8D;, where a spike invad-
ing the t-junction segment is plotted with and without a connected
stem axon and soma. The presence of bifurcation results in a signif-
icant reduction in spike amplitude localized to the t-junction. The
second later peak, arising from the regenerative spike in the stem
axon, was also reduced. As a result, enhancing M channels in the
central axon alone, distal from the t-junction, failed to block AP
transmission under retigabine conditions using Iy; density values
of 45 pA/pF and V; 2 = —60 mV (not shown). Membrane excitability
at the t-junction and surrounding axons also influenced the ampli-
tude of the invading spike. For example, varying Gy, density
affected the spike waveform at the t-junction (Fig. 8D;) and, in
turn, the reliability of AP propagation; in general, raising G,
density elevated the safety factor for spike propagation across
the t-junction. Na* channel inactivation had little effect on spike
propagation. At the resting potential, 17% of the conductance was
inactivated. With hyperpolarization, reactivation of the channels
and an increased effective Gy, was not sufficient to counter the
effects of the lower impedance at the t-junction and the effect of
hyperpolarization.

Stem axon length and diameter strongly affected the impedance
relationship between parent and daughter axons, and as a result,
affected AP propagation in the model. With longer stem axons of
200 um or greater, basal Iy, density had to be increased to
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Fig. 8. Biophysical model of a small-diameter unmyelinated dorsal root ganglia (DRG) neuron. (A) Morphology of a small-diameter unmyelinated DRG neuron. (A;) Drawing
of the somatic and perisomatic regions of a small-diameter cat DRG neuron taken from [35] to illustrate the relative geometry of the peripheral, central, and stem axons, as
well as the soma. (A,) Morphological dimensions of the model neuron. The stem axon (1.4 pm diameter, 75-200 um length) arising from the soma (25 pm diameter)
bifurcates into the unmyelinated peripheral axon (0.8 um diameter) and central axons (0.4 pm diameter). (B) Enhancing M channels reduced spike propagation in the model
neuron. M channels were added to the soma, stem axon, as well as peripheral and central axon segments proximal to the T-junction. They were enhanced in a manner based
on the effects of retigabine (RTG); activation was shifted by —30 mV and conductance density was increased 1.5-fold. With an initial M current (Iy;) density of 0.9 pA/pF (at a
Vy2 =30 mV; B,) spike propagation was reliable. The simulated effect of enhancing M channels with RTG hyperpolarized the soma and reduced spike propagation (B).
When the initial I; density was increased to 1.05 pA/pF, RTG enhancement blocked spike propagation. In contrast, somatic current injection that achieved slightly greater
hyperpolarization failed to block spike propagation (B3). Only when hyperpolarization was at least 4.4 mV below E..x was propagation blocked. (C) M channel activation
reduces the likelihood of spike generation in the central axon. (C;) Action potential (AP) amplitude is plotted as function of distance along 100 pum of peripheral and central
axon surrounding the t-junction. The interval between each trace is 0.15 ms. Under basal conditions, spikes approaching the t-junction decreased in amplitude, consistent
with the approaching impedance load of the bifurcation. On the central side of the t-junction, a delayed AP arises and grows with distance from the t-junction. Note that
voltage-gated Na* channels (VGNC) density is uniform throughout all 3 axonal regions. (C;) Under RTG conditions, the amplitude of the spikes approaching the t-junction was
not significantly affected. In contrast, the spike fails on the central side of the bifurcation and the transient decays and broadens with distance from the t-junction. (D) VGNC
density and axonal bifurcation are critical determinants for the low-safety factor of spike propagation. (D;) Simulation with and without the stem axon connected to the
peripheral and central axons demonstrating the effect of the bifurcation on spike amplitude at the t-junction. (D) VGNC conductance (Gy,) density affects spike waveform at
the t-junction. Gy, density was varied between 35, 40, and 45 mS/cm?. (E) Effect of the spatial distribution M channel modulation. At an initial I; density of 0.9 pA/pF, RTG
enhancement of M channels in the soma and stem axon, as well as proximal peripheral and central axon segments, prevented spike propagation (E,). However, when M
channels were restricted to only the soma and stem axon, spike propagation was reliable, as in (E; ). Spikes failed when initial I; density was raised to 1.2 pA/pF (E3). Likewise,
when RTG enhancement was limited to only the axon segments proximal to the t-junction, spikes reliably propagate into the central axon; initial Iy density had to be raised
to 5.1 pA/pF to limit spike propagation (E4).
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13.5 pA/pF (V12 = —60 mV) in order for M channel enhancement to
interfere with AP transmission. When the stem axon had an equiv-
alent diameter to the peripheral axon (0.8 um), thereby decreas-
ing the conductance ratio [(diamMgaygnter1)*? + (diaMgaugneer2)*2]/
(diampa,e,n)“"/2 [19] from 2.67 to 1.35, the minimal Iy; density
needed to block spikes was 78.3 pA/pF (V1 = —60 mV).

M channel subunit Kv7.2 expression has been observed not only
in the soma, but also in the stem axon and peripheral fibres [100].
Thus, we examined how the spatial distribution of RTG-enhanced
M channels at the soma, stem, and flanking axons affected spike
propagation. Starting with an initial Iy; density of 0.9 pA/pF, as
above, RTG modulation of M channels only in the soma and stem
axon had no effect on spike propagation. Only when the initial Iy
density was increased to 1.2 pA/pF did RTG enhancement affect
spike propagation (Fig. 8E;3). Likewise, RTG enhancement of M
channels limited to only the peripheral and central axons flanking
the t-junction had no effect on spike propagation until the initial
density was increased to 5.1 pA/pF (Fig. 8E,4), consistent with the
differences in surface area. It is important to note that the range
of M channel initial densities used in these simulations (~1 to
~5 pA/pF) is comparable to, if not less than, the ranges reported
in the literature (2.5 to over 20 pA/pF [17,74,93,100]). If M channel
densities were indeed higher, RTG enhancement would be even
more potent. Lastly, the densities of M channels that blocked prop-
agation were highly dependent on Ry and Gy,; with higher Ry,
fewer M channels were required to achieve comparable hyperpo-
larization (and vice versa). Likewise, with greater excitability (ie,
higher Gy,), larger M channel densities were needed to block spike
propagation (not shown).

HCN channels are active at the E,s; of DRG neurons in vitro, and
pharmacological blockade of these conductances hyperpolarizes
the membrane potential. Moreover, when HCN blocker is focally
applied to the DRG via cannula, it also reduces the nociceptive
response in vivo. Blocking HCN channels in our model DRG neuron
also hyperpolarized membrane potential, as expected (Fig. 9A).
However, hyperpolarization of —3.98 mV below E.. failed to affect
spike propagation. In comparison, hyperpolarization of —3.6 mV
produced by RTG enhancement of M channels completely blocked
AP signalling. Only when membrane potential was hyperpolarized
by at least 4 mV was there interference with AP propagation
(Fig. 9B). As with the effect of M channel enhancement, the

A Control V,a= -60 MV
—— t-junction
—— 100 um into
central axon
B 7D — 'won = 24.5 pA/pF (-63.98 mV)
— lhon = 25 PAIRF (64 mV) V. =e4mv

soma

Fig. 9. Hyperpolarization produced by blocking hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels prevents spike propagation in the dorsal root
ganglia model neuron. (A) Starting with an initial HCN channel density of 24.5 pA/
pF, spike propagation was reliable in control simulations. (B) Blocking HCN
channels (in the soma, stem, and axons proximal to the t-junction), hyperpolarized
somatic Er,, and limited spike propagation. Increasing the initial density to 25 pA/pF
resulted in slightly greater hyperpolarization and complete block of spike
propagation.

transition between reliable conduction and failure took place
within a small voltage range of hyperpolarization produced by
HCN channel blockade.

Blocking HCN channels required a greater magnitude of hyper-
polarization than observed with M channel enhancement because
it not only hyperpolarizes the t-junction (reducing the safety factor
for spike propagation), but also reduces total membrane conduc-
tance, elevating the safety factor (but to a lesser degree). The effect
on spike waveform at the t-junction and the proximal central axon
was comparable to that observed for both M channel enhancement
and somatic hyperpolarizing current injection. The model predicts
that enhancing M channels might be a more potent inhibitor of
nociceptive responses than blocking HCN channels; the possible
explanation for this discrepancy is discussed below.

4. Discussion

Peripheral nociceptive transmission is generally conceptualised
as an uninterrupted conduction of peripherally generated APs from
their respective sites of origin (eg, skin terminals) to the spinal cord
along sensory nerve axons. It has long been recognised that
sensory neuron somata are electrically excitable [3,12,46-
48,77,111,122], but the cell body and stem axon residing in the
sensory ganglia are generally not considered to be important for
conduction (eg, [4]). In this study we addressed the following ques-
tions regarding somatic excitability of nociceptors and its role in
the peripheral nociceptive transmission. 1) what major families
of ion channels contribute to the somatic E.s? 2) How does
manipulating somatic/perisomatic E..; impact transmission of
peripherally born nociceptive signals in vivo and in silico?

Firstly, we screened for classes of ion channels that influence
Erest Of nociceptors. We focused on ion channels that are 1)
expressed in small-diameter nociceptive neurons and 2) active at
or near —60 mV (ie, M channels, 4-AP sensitive Ky, K2P “leak,”
HCN, Katp, low-threshold Cay, and Nay channels). We found that
manipulation of all these channels affected E, in varying
proportions of small-diameter DRG neurons. However, different
channels had different efficacies and prevalence within the
neuronal population tested. Comparison of effects presented in
Figs. 1 and 2 and Table 3 shows the following ranked sequence
for hyperpolarizing manipulations: 1M channels > |TTX-sensitive
VGNC = TKarp = TK2P > |HCN > 7Ky, > | TTX-resistant VGNC > |Ca,3.
For compounds producing depolarization, the effects were less
graded, with inhibition of M channels, K2P, and 4-AP-sensitive
Kv channels having stronger and more prevalent effects. Our
current clamp recordings were designed to mimic the effects on
the E.s of the acute modulation of ion channel activity by
endogenous regulatory molecules (eg, inflammatory mediators,
cytokines, hormones) released, for example, during acute
inflammation or cancer, and also by peripherally active analgesics
(for review, see [26,73,85]). Therefore, our screen has identified the
complement of ion channels that would have the largest effect over
the nociceptor’s somatic E.s during such conditions.

M channels were found to have strong influence over Ees;, as
both inhibition and enhancement of M channels caused ~10 mV
de- or hyperpolarization, respectively. M channels are physiologi-
cally inhibited by Gq/11-coupled protein-coupled receptors (GPCR)
such as M; mAChR, bradykinin B,, protease activated receptor-2,
and angiotensin I ATy, and such inhibition results in depolarization
and increased firing (reviewed in [26,40,105]). In contrast, some
Gijo-coupled GPCR, such as somatostatin receptors, increase
M current [87,98]. In nociceptors, M channels can be augmented
by neurokinin receptors [69,71], an action that results in reduced
excitability [71]. Thus, M channels may represent a major endoge-
nous mechanism for tuning the excitability of nociceptive neurons.
4-AP-sensitive Kvs, for example, Kv1.4, Kv2s, and Kv3.4, expressed
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in small DRG neurons [26] as well as K2P channels, also strongly
influenced E,.s; the K2P channel contribution was significantly
higher at 37°C (suggesting large contribution of temperature-
sensitive TREK-2 channel, which has low activity at room temper-
ature [52] and is highly expressed in IB4-positive nociceptors [1]).
Karp channels, while present in ~70% of nociceptors (as evidenced
by the hyperpolarization induced by Kap enhancer, PIN), were not
active at rest, as the Karp inhibitor GLIB failed to depolarize the
Erest. In contrast, Ky, channel inhibition produced moderate depo-
larization (~5 mV) in 55% of the neurons; the Ky, enhancer LOX
produced only a marginal effect.

Among depolarizing currents, we tested the contribution of
HCN channels, T-type Ca?* currents, and VGNC. In ~60% of the neu-
rons, a modest hyperpolarization (relative to that produced by
RTG) was observed with the blockade of HCN channels. Inhibition
of TTX-resistant Na* channels produced large (~—10 mV) hyperpo-
larization of the membrane, but in a very small proportion (9%) of
neurons. In the majority of DRG cells, TTX hyperpolarized E s, but
only by —2 to —3 mV. Other cationic or anionic background
conductances that may potentially also contribute to E..s (eg, per-
sistent currents through Y-aminobutyric acid [GABA]4 or N-
methyl-D-aspartate receptors expressed in DRG [66,67,124]) were
not addressed in the current study.

Our next question was to establish how modulation of “resting”
conductances of the somatic and perisomatic compartments of
nociceptors affects transmission of sensory information from
periphery to the spinal cord. We tested whether compounds that
hyperpolarize E, of small DRG neurons interfere with the relaying
of APs from the periphery in vivo. Indeed, focal application of 2 K*
channel enhancers, RTG and PIN, as well as the I, blocker ZD strik-
ingly attenuated nocifensive behaviour induced by the hind paw
injection of BK (Fig. 7). The Kya enhancer LOX, which only
produced nominal hyperpolarization in vitro, was without effect.

In order to better understand how these compounds were
limiting pain information from reaching the spinal cord, we con-
structed a computational model of a small-diameter unmyelinated
DRG neuron and reached the following conclusions:

1) The morphology of the DRG axon bifurcation based on ana-
tomical measurements [35,45,112] fosters an intrinsically
low safety factor for AP propagation that has been observed
experimentally in amphibian and embryonic DRG neurons
[79,109], as well as adult mammalian C-fibre neurons [33].
An electronically short stem axon, achieved by a short length
and/or larger diameter, was essential to the low safety fac-
tor. The diameter provides for a larger conductance ratio
and both the length and diameter allow potential at the
soma to affect potential at the t-junction. Hyperpolarization,
produced by enhancing M channels, blocking HCN channels,
or somatic current injection, further lowered the safety
factor and, as a result, interfered with AP propagation.
Increased membrane conductance (induced by somatic/peri-
somatic K* channel enhancement) additionally contributed
to lowering the safety factor. Without a t-junction, the safety
factor in the axon is relatively high, and comparable ion
channel modulation, for example, in the central axon distal
to the t-junction, had no effect on spike transmission.
Accordingly, injection of M channel enhancer flupirtine
(close analogue of RTG) into sciatic nerve of control rats
did not affect nociceptive transmission from the periphery
(while similar injection of lidocaine expectedly did) [100].
Recent evidence suggests that the site of analgesic activity
of systemically administered RTG is almost exclusively
peripheral because, in contrast to its anticonvulsant activity,
it was not antagonized by central application of XE [39].
Thus, since the t-junction most likely has the lowest safety

factor for AP propagation within the peripheral nociceptive
pathway, it is logical to hypothesize that AP failure at
nociceptive neuron t-junctions may contribute to the
analgesic effect of systemic RTG.

2) The soma of a small-diameter unmyelinated DRG neuron is
electrotonically close enough to the t-junction to influence
AP transmission. Although excitability (in this case,
electrogenesis) at the soma does not normally affect spike
propagation [4], hyperpolarization of the soma substantially
influences membrane potential at the t-junction. As a result,
manipulations that sufficiently hyperpolarize the t-junction
interfere with the transmission of APs from the periphery to
the spinal cord, again assuming a low safety factor
(discussed above).

3) The combination of hyperpolarization and increased mem-
brane conductance should be more potent at blocking spike
propagation than either alone. Thus, the efficacy of ZD to
attenuate BK-induced pain observed in vivo is not entirely
consistent with modelling results. It has been reported
recently that I}, density was very low in C-fibre nociceptors,
but much higher in nociceptive sub-populations of As and
Ap fibres (5, 13, and 21 pA/pF at —100 mV, respectively)
[31]. Notably, in our simulations (Fig. 9), HCN channel block
interfered with AP propagation only at high HCN channel
densities (~25 pA/pF), suggesting a possible explanation
for the weak effect of ZD on E.s in small nociceptors
in vitro and relatively strong effect in reducing peripherally
induced pain in vivo: the in vivo effect of ZD is likely to be
mediated by AS and AB nociceptors. The model demon-
strates proof-of-principle that interference with AP propaga-
tion, even at low stimulus frequencies, could be achieved by
manipulating somatic/perisomatic conductances in DRG
[44,75,78].

Importantly, both our in vivo and in silico experiments strongly
suggest that somatic/perisomatic compartment of nociceptive neu-
rons has indeed a strong filtering role and may impede incoming
APs. Potentially in support of this finding is the recent clinical
discovery that electrical stimulation (neuromodulation) of DRG in
humans via the implanted electrodes provides efficacious pain
relief in patients with various “untreatable” neuropathic pain syn-
dromes [20,68,95]. The exact action of such DRG stimulation has
yet to be discovered. However, the facts that a) DRG stimulation
itself does not cause pain, and b) cessation of stimulation allows
pain to return [68], suggests that this type of analgesia arises from
the induced failure of peripherally generated APs to pass through
the ganglion.

To our knowledge, the experiments presented here are the first
to demonstrate that somatic/perisomatic E;, can regulate sensory
transmission from the periphery to the spinal cord. Thus, the
DRG may play a much stronger role in controlling peripheral
transmission than generally accepted, representing a hitherto
underappreciated additional “gate” within the peripheral nocicep-
tive system.
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